Oligomorphic Clones
نویسندگان
چکیده
A permutation group on a countably infinite domain is called oligomorphic if it has finitely many orbits of finitary tuples. We define a clone on a countable domain to be oligomorphic if its set of permutations forms an oligomorphic permutation group. There is a close relationship to ω-categorical structures, i.e., countably infinite structures with a firstorder theory that has only one countable model, up to isomorphism. Every locally closed oligomorphic permutation group is the automorphism group of an ω-categorical structure, and conversely, the canonical structure of an oligomorphic permutation group is an ωcategorical structure that contains all first-order definable relations. There is a similar Galois connection between locally closed oligomorphic clones and ω-categorical structures containing all primitive positive definable relations. In this article we generalise some fundamental theorems of universal algebra from clones over a finite domain to oligomorphic clones. First, we define minimal oligomorphic clones, and present equivalent characterisations of minimality, and then generalise Rosenberg’s five types classification to minimal oligomorphic clones. We also present a generalisation of the theorem of Baker and Pixley to oligomorphic clones. This is a updated post-print version of an article with the same title that appeared in Algebra Universalis, 57(1): 109-125, 2007.
منابع مشابه
Reconstructing the topology of clones
Function clones are sets of functions on a fixed domain that are closed under composition and contain the projections. They carry a natural algebraic structure, provided by the laws of composition which hold in them, as well as a natural topological structure, provided by the topology of pointwise convergence, under which composition of functions becomes continuous. Inspired by recent results i...
متن کاملMaximal Infinite-Valued Constraint Languages
We systematically investigate the computational complexity of constraint satisfaction problems for constraint languages over an infinite domain. In particular, we study a generalization of the well-established notion of maximal constraint languages from finite to infinite domains. If the constraint language can be defined with an ω-categorical structure, then maximal constraint languages are in...
متن کاملConstraint Satisfaction with Weakly Oligomorphic Template
Constraint satisfaction problems form a very interesting and much studied class of decision problems. Feder and Vardi realized their relation to general coloring problems of relational structure. This enabled the use of algebraic, combinatorial, and model theoretic methods for studying the complexity of such decision problems. In this paper we are interested in constraint satisfaction problems ...
متن کاملSequences realized as Parker vectors of oligomorphic permutation groups
The purpose of this paper is to study the Parker vectors (in fact, sequences) of several known classes of oligomorphic groups. The Parker sequence of a group G is the sequence that counts the number of G-orbits on cycles appearing in elements of G. This work was inspired by Cameron’s paper on the sequences realized by counting orbits on k-sets and k-tuples.
متن کامل